<p/><br></br><p><b> About the Book </b></p></br></br>Graduate-level course covers the general theory of factorization of ideals in Dedekind domains, the use of Kummer's theorem, proofs of the Dirichlet unit theorem, and Minkowski bounds on element and ideal norms. 2003 edition.<p/><br></br><p><b> Book Synopsis </b></p></br></br>This graduate-level text provides coverage for a one-semester course in algebraic number theory. It explores the general theory of factorization of ideals in Dedekind domains as well as the number field case. Detailed calculations illustrate the use of Kummer's theorem on lifting of prime ideals in extension fields.<br>The author provides sufficient details for students to navigate the intricate proofs of the Dirichlet unit theorem and the Minkowski bounds on element and ideal norms. Additional topics include the factorization of prime ideals in Galois extensions and local as well as global fields, including the Artin-Whaples approximation theorem and Hensel's lemma. The text concludes with three helpful appendixes. Geared toward mathematics majors, this course requires a background in graduate-level algebra and a familiarity with integral extensions and localization.
Cheapest price in the interval: 10.89 on November 8, 2021
Most expensive price in the interval: 10.99 on March 10, 2021
Price Archive shows prices from various stores, lets you see history and find the cheapest. There is no actual sale on the website. For all support, inquiry and suggestion messagescommunication@pricearchive.us