<p/><br></br><p><b> Book Synopsis </b></p></br></br><p><i>Proper Orthogonal Decomposition Methods for Partial Differential Equations </i>evaluates the potential applications of POD reduced-order numerical methods in increasing computational efficiency, decreasing calculating load and alleviating the accumulation of truncation error in the computational process. Introduces the foundations of finite-differences, finite-elements and finite-volume-elements. Models of time-dependent PDEs are presented, with detailed numerical procedures, implementation and error analysis. Output numerical data are plotted in graphics and compared using standard traditional methods. These models contain parabolic, hyperbolic and nonlinear systems of PDEs, suitable for the user to learn and adapt methods to their own R&D problems.</p><p/><br></br><p><b> Review Quotes </b></p></br></br><br><p>This book details the application of the Proper Orthogonal Decomposition (POD) to instationary problems whose spatial semidiscretization is done either by Finite Difference (FD), Finite Element (FE) or Finite Volume (FV) methods. These three discretization methods correspond to the 3 main chapters of the book. <b>--zbMATH</p></b><br><p/><br></br><p><b> About the Author </b></p></br></br>Zhendong Luo is Professor of Mathematics at North China Electric Power University, Beijing, China. Luo is heavily involved in the areas of Optimizing Numerical Methods of PDEs; Finite Element Methods; Finite Difference Scheme; Finite Volume Element Methods; Spectral-Finite Methods; and Computational Fluid Dynamics. For the last 12 years, Luo has worked mainly on Reduced Order Numerical Methods based on Proper Orthogonal Decomposition Technique for Time Dependent Partial Differential Equations.
Price Archive shows prices from various stores, lets you see history and find the cheapest. There is no actual sale on the website. For all support, inquiry and suggestion messagescommunication@pricearchive.us